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Abstract

Data preparation is essential for effective machine learning (ML), yet typically
remains a manual, time-consuming process. While automated machine learning
(AutoML) has successfully addressed modeling aspects of the ML workflow, data
preparation has largely been overlooked, leading to challenges with real-world, im-
perfect data. Conversely, a rising paradigm in the world of artificial intelligence
(AI) and ML is that of data-centric AI, shifting focus from just refining models, to
enhancing data in order to advance performance boundaries. This survey motivates
the need for automated solutions regarding data preparation, offering a fundamental
understanding of the benefits of data transformations and establishing the complex-
ity of data pipeline optimization, while highlighting the importance of data quality.
We provide a comprehensive overview and categorization of existing automation
approaches, both in AutoML and as standalone fully or semi-automated systems.
We discuss underlying methodologies, their advantages, and limitations. Our work
explores the prospects of expanding automation to cover a broader data preparation
process, aiming to bridge the gap between data-centric AI and AutoML. It paves
the way to a wholly automated pipeline from raw real-world data to quality model
predictions, and outlines future research directions towards that goal.

1 Introduction

Motivation. The field of artificial intelligence (AI), more specifically machine learning
(ML), has undergone a period of explosive growth in recent years. This phenomenon
has been fueled by multiple factors, including increasing availability of large amounts of
data, advancements in computational power driven by hardware improvements and cloud
computing, as well as significant algorithmic innovations such as novel neural network
architectures, improved training strategies, and more efficient optimization techniques.
One of the challenges that has been raised among these innovations is that of automating
data science [DBDRH+22].



Data science (DS) allows us to extract insights about the real world trough data-driven
approaches, which often draw upon ML techniques. Machine learning heavily relies
on human expertise, namely knowledge of the domain its data stems from, as well as
technical skills in mathematics, programming, and ML itself. Nonetheless, a significant
part of its workflow can also be delegated to automation. This has been the focus of the
domain of automated machine learning (AutoML) [HKV19], which leverages automation
techniques with the objectives of widening the machine learning audience by making ML
more accessible to non-experts, improving the efficiency of the ML process via optimized
design choices, and accelerating research in the field through faster experimentation.

The machine learning pipeline can be subdivided into two overarching components:
(1) data preparation and (2) modeling. Data preparation designates the application
of a sequence of transformations to raw data. Its goal is to ensure usability of the data
by resolving any incompatibilities with a given ML model, and optimize result quality
once it is input into that model. Modeling, which represents the core of the ML pro-
cess, encompasses selecting the most adequate machine learning algorithm to apply to
the data, and tuning its hyperparameters so as to obtain the best possible outcomes.
These two components are closely intertwined: data preparation can be tailored to a
chosen model, while at the same time the state of the data influences the best choice of
model [OMB+24].

The field of data science incorporates a deeper data preparation segment that reaches
beyond typical data treatment in ML. While the latter is largely focused on model com-
patibility and performance, broader data preparation, as seen by the database (DB) com-
munity, extends to processes aimed at organizing data and raising its quality [CWL+23].
These aspects serve to improve the efficiency, effectiveness, and reliability of any down-
stream analytics and systems, including machine learning pipelines.

In this work, we consider a holistic data preparation definition integrating the under-
standing of the term by both the DB and ML communities, as both eventually have a
significant impact on ML outcomes. Figure 1 illustrates the structure and relationships
between the different entities and processes composing a DS workflow that enfolds an ML
pipeline. The figure highlights the data preparation process, and outlines its interaction
mechanisms within the larger ML and DS workflows.

Both the data preparation and modeling steps of the machine learning pipeline are es-
sential for good results [Law17, ALPS22, OMB+24], in terms of model quality as well
as time and memory performance. In some conditions, it may be possible to overcome
certain types of data imperfections with robust models instead of resorting to data prepa-
ration [PDTL20, CAV22, NCA+22]. However, this is not the general case. In practice, it
is common for data preparation to occupy the majority of a data scientist or ML practi-
tioner’s time, with literature estimating shares of 50-90%, and multiple claims of around
80% [Mun12, BAAW16, SK19, WL20, KDS+24]. The customary manual treatment of
both data and model optimization is in fact quite time-consuming, typically warranting
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Figure 1: Data preparation within the ML and DS workflows

an iterative trial and error approach by an expert in ML or data science—hence the
appeal of AutoML, which reduces the human effort and bias involved in these slow and
repetitive tasks, while simultaneously optimizing the performance of the ML system.

Historically, the machine learning field has been dominated by model-centric approaches,
concentrated on achieving performance by optimizing algorithms, models, and hyperpa-
rameters. While the database community has long focused on improving data systems,
relatively little of that work has actually been adopted in ML workflows. Yet, data
quality often presents a bottleneck in ML [Sin23, MP24], as models are ultimately only
as effective as the data that shapes them [JPN+20, WRSL23, ZBL+23]. This is par-
ticularly true in real-world ML applications, where data is typically imperfect in many
ways (e.g., inconsistent, noisy, incomplete), thus termed dirty data [HS98, KCH+03].
Recognizing not only this setback, but also the potential performance upside of op-
timizing data [BBP+24, MP24], the rising data-centric AI (DCAI) [JMG23, ZBL+23,
JVK+24, KDS+24, ZBL+25] paradigm shifts the focus from refining the model to en-
hancing the data. By prioritizing data quality, data-centric machine learning research
(DMLR) [OMB+24] aims to bring the added effectiveness, efficiency, and reliability of
data-centric approaches to ML processes.

Taking a closer look at AutoML research, we observe strong tendencies favoring the
modeling phase of the ML pipeline, while the data preparation aspect is mostly over-
looked, essentially following the same trend as traditional machine learning [OMB+24].
This imbalance is witnessed by scarce publications and the notable absence of surveys
or reviews centered around automating data preparation, in addition to little attention
to the topic in AutoML surveys [KSHS+21, HZC21, ZH21, BWL+24, SIS+24, SZW+24].
In fact, leading openly available AutoML systems often necessitate already preprocessed
input data or provide minimal data preparation [TWG+19, KPZS20, Kra20, BAI+22],
whilst focusing on modeling, which can significantly limit their usability on real-world
data [RRK+22].

Moreover, there appears to be a disconnect between claims that AutoML and resulting
industry solutions have solved the problem of automating the entirety of the ML workflow,

3



and the reality of remaining data issues and lack of meaningful benchmarks for real
applications [Kum21]—thus raising the question of automating data preparation, and
prompting inquiry into its feasibility, usefulness, and necessity [Pat19].

Objective. In this article, we survey the existing body of knowledge on automating the
data preparation process in the context of machine learning, seeking to offer insights
regarding scope, relevance, challenges, and methodologies. We lay the groundwork for
research on the holistic integration of data preparation into automated machine learning,
in an effort to facilitate extending the reach of automation to the complete data science
workflow, and bridge the gap between AutoML and data-centric AI.

Scope. We delve into the specifics of data preparation, covering the entire data treatment
pipeline between raw source data and fully processed data as it is used for ML model
input. While many different terms are frequently employed in literature to designate parts
of this process—data wrangling, data engineering, data cleaning, data preprocessing,
feature engineering, and several others—their meanings often vary or overlap, hence our
use of the term data preparation to unify them.

In an overview of underlying data transformations, we direct our attention to the different
categories of operations and their value to the overall process. We strive to provide a
well-rounded and structured approach with representative examples. We further expand
upon the challenges in designing and evaluating data pipelines.

Even though there are multiple data modalities that can be handled by machine learning
algorithms, such as text, image, audio, or video data, our study does not consider them
all in-depth. We primarily focus on tabular data, as the most common format in data
science and classical (Auto)ML. We do, however, note that some recent advances in
AutoML incorporate techniques to deal with multimodal data [TFZ+24].

As the core of our work, we survey developments around the topic of automating the data
preparation process. In particular, we examine the presence and role of data transfor-
mations in existing AutoML systems. Additionally, we explore the numerous and varied
approaches to automating data preparation. This includes approaches covering the com-
plete process or specific data aspects, operating in a fully automated manner or aided by
human input.

Contributions. To the best of our knowledge, this survey is the first of its kind to focus
on data preparation for machine learning as a whole, and specifically on automating it.
Our main contributions lie in establishing a thorough background for the complete data
preparation process, proposing a taxonomy of the data transformations within, explor-
ing challenges, and providing a review of the current state of research on automating
the process—thus creating a connecting thread from fundamentals of the field, through
current automation progress, to prospects for further advancement. To be more precise:

1. We initially present a comprehensive background of data preparation in ML and the
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relevant context. We highlight the different categories of data transformations and
their most common operations, and provide a meaningful structure according to their
roles. We assess the challenges in data preparation pipeline design, as well as in their
evaluation.

2. To begin investigating automation aspects, after compiling a list of pertinent AutoML
systems, we group them them by data pipeline optimization architecture. We deliver
an analysis of the automated data preparation elements integrated into each system,
and extract common tendencies.

3. We then examine semi-automated data preparation frameworks, taking into account
scope, features, and objectives, and categorizing them with regard to their varied
approaches. We further derive insights on the feasibility and challenges of automating
the whole process.

4. Following that, we provide an overview of fully automated data preparation method-
ologies, with example systems belonging to each. We review their merits and short-
comings, and present a comparative analysis along relevant criteria for the choice of
quality solutions.

5. Lastly, we summarize and discuss our findings, and consider future research directions.

ML Terminology. In order for the paper to be self-contained, we provide definitions of
ML-related terms relevant to the context. They can be found in Table 4 in Appendix
Section A.

2 Data Preparation: Transformations

In the context of machine learning, data preparation transformations are operations
applied to data, with the end goal of enhancing results when combined with a
model [Agg15, GLH15, SZ19, Bro20, HN20, FKK+23]. The pool of possible transfor-
mations is large, and the relevance of each transformation depends on the data itself,
but potentially also the ML task to be performed, and the model employed for the task.
To facilitate navigation among these possibilities, we extract a structure based on the
aspects of data preparation that each transformation addresses.

2.1 Taxonomy Structure

We propose a taxonomy of data preparation transformations with three levels of catego-
rization: transformation (1) purpose, (2) function, and (3) category. A visual represen-
tation of this structure is depicted in Figure 2.

On the highest level, transformations can be characterized by what they aim to achieve,
i.e., their purposes: data organization, data quality, and model performance [NWC+20].
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Rather than always having precise cutoffs, transformation purposes form a spectrum
such that transformations can serve multiple purposes to varying degrees. For example,
aligning data contents is an organizational task that also results in higher-quality data,
which eventually translates to better model predictions. In the interest of clear structur-
ing, we attribute transformations to primary purposes. We also note that each purpose
is generally conducive to the next one: good organization is reflected in data quality, and
quality tends to boost the results achieved by models.

We further differentiate transformations by their functions, the functional facets through
which they advance their purposes: data integration, data cleaning, data preprocessing,
and feature engineering. Similarly to purposes, there is some overlap between adjacent
transformation functions.

Finally, we assign transformations to multiple categories, by grouping together different
transformation methods that address a common data preparation element—whether re-
solving a common problem with the data (e.g., different ways to handle missing values),
or improving a common aspect of the data (e.g., different ways to generate data points).

Below are descriptions of data preparation purposes, functions, and the categories of
transformations enveloped within, along with transformation method examples of each
type. We note that this is not a complete catalog of all possible data transformations,
particularly if we consider the prospect of creating custom operations optimized for each
individual dataset. In practice, transformation ordering often tends to align with the
presented order, however this is not a mandatory pattern.

2.2 Data Organization

Organizing data implies shaping it into a format that is well-suited for analytics and
further exploitation. For tabular data, this is commonly a single dataset with data
points as rows and features as columns. In the case of supervised learning, a target
variable column is also included.

2.2.1 Data Integration

Data integration [Len02, ZD07, Doa12], also known as ETL (Extract, Transform, Load),
consists in putting together data from different sources and in different formats, into a
single coherent dataset in a format that can be input into an ML model and processed
by it. Integration concerns both outward formatting and content organization.

Parsing refers to extracting data from a variety of sources and formats and loading their
contents into structured datasets.

Examples: importing data from databases, spreadsheets, files in varied formats,
into datasets.

Merging designates combining the contents of multiple datasets, with possibly different
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structures, into a single dataset, while recognizing shared features (schema align-
ment).

Examples: vertical, horizontal, or diagonal concatenation; inner, outer, left, or right
join.

Type handling stands for converting and manipulating data types to make sure they are
supported and interpretable by data preprocessing operations and ML models.

Examples: casting booleans to categorical or numeric types, casting complex types
to more interpretable ones (e.g., dates in string format to date/time or numeric
formats), simplifying composite types (e.g., exploding lists of values into separate
data points).

Content alignment focuses on handling cases where the same information appears in mul-
tiple datasets, columns, or data points, but with inconsistencies or different format-
ting. Content alignment includes entity resolution [GM12, CEP+20, ZZT+20] (e.g.,
recognizing "John Smith", "J. Smith", "Smith, John" as the same entity), seman-
tics (e.g., unifying "birth_date" and "DOB" features), and units (e.g., converting
km, m, cm to the same unit).

Examples: record linkage [Win14] (linking entities based on shared attributes),
fuzzy matching [Nav01] (approximate string matching), unit standardization (e.g.,
converting all distances to meters).

2.3 Data Quality

High-quality data is crucial for trustworthy analysis, and provides a strong foundation for
inference [MBF+25]. Independent of the chosen model, data quality can be improved by
making sure the data is complete, consistent (no conflicting information), representative,
and interpretable. Data quality sets an upper bound on model performance with regard
to reality [LRB+21, WRSL23].

2.3.1 Data Cleaning

Data cleaning [RD00, Das04, CIKW16] targets imperfections in the data contents, such
as errors, inconsistencies, or the presence of unnecessary elements; ensuring the data
can be used by a model, and raising its general quality by repairing or removing these
imperfections.

Missing values refer to completing data by detecting and handling null values in the
dataset.

Examples: removing missing values, imputing [LT19] (filling) them using different
methods (e.g., forward/backward filling i.e., using the value of the next or previ-
ous data point, interpolation, the k-nearest neighbor [Pet09] algorithm), encoding
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"missing-ness" as a new feature.

Duplicates designate detecting and handling duplicated data points in a dataset, so as
to avoid incorrect biases.

Examples: removing duplicates, encoding them as a new feature representing the
number of appearances of each data point.

Outliers address detecting and possibly removing outliers, i.e., data points that signifi-
cantly differ from the rest of the data or their surroundings, and could represent
errors or noise.

Examples: detection using standard deviation or IQR (interquartile range) [HA04].

Value correction deals with detecting and repairing incorrect or inconsistent values in the
data. It concerns feature value repair [Ber19b] (e.g., spelling errors, out-of-range
measurements, or examples such as a mismatched city and postal code), often
referred to as record repair in a database context, as well as label correction [FV14,
SKP+23] when the error concerns the target variable (wrongly labeled data points).

Examples: rules and constraints (e.g., age must be ≥ 0), outlier value detection
(c.f. Outliers above) combined with statistical (e.g., mean, mode) or ML-based
(e.g., classification, regression) imputation.

2.4 Model Performance

Model performance optimization refers to transforming data in order to improve the out-
comes of a particular ML model. The main performance criterion is usually a chosen
effectiveness metric for that model (its loss function), but there can also be considera-
tions for efficiency, prompting additional optimization for execution time and resource
usage [NAR13, MSK21].

2.4.1 Data Preprocessing

Data preprocessing addresses the distribution and contents of data points in order to
make the data more robust and facilitate correct interpretation by a model, raising its
performance. Preprocessing makes it possible to leverage the superior efficiency of many
ML models when it comes to working with numeric data. Moreover, changing the number
of data points can, in addition to balancing out data distribution, also affect time and
memory usage due to differences in the amount of data to pass through the model.

Resampling [CPB25, KSA+21, BL21] mitigates issues relating to imbalances in data
distribution, typically for classification tasks, via oversampling or undersampling,
i.e., strategically adding data points to underrepresented classes (i.e., minority
classes) or removing data points from overrepresented classes (i.e., majority classes).
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Examples: Oversampling methods: random oversampling (duplicating random
data points in minority classes), SMOTE—Synthetic Minority Oversampling Tech-
nique [CBHK02] (generating new points via interpolation between minority class
data points and their nearest neighbors), ADASYN—Adaptive Synthetic algo-
rithm [HBGL08] (an extension of SMOTE specifically targeting the lowest density
areas of minority class data points); Undersampling methods: random undersam-
pling (removing random data points in majority classes), ENN—Edited Nearest
Neighbors [Wil72] (removing majority class points located in a neighborhood of
predominantly minority class points), Tomek’s Links [Tom76] (removing majority
class points whose nearest neighbor is a minority class point).

Data augmentation [MM22] corresponds to synthetically generating new data points,
by altering or combining feature values from existing ones.

Examples: for tabular data, augmentation can coincide with resampling methods
that generate synthetic data points, such as SMOTE and ADASYN mentioned
above. There can be more diverse transformations for other kinds of data, e.g., for
images: flipping, rotating, cropping; or for text: replacing words with synonyms,
deleting some words.

Scaling designates the scaling of numeric features by adjusting their range or distribution,
without distorting the differences between values. It brings consistency, ensuring
that no feature dominates others due to its magnitude. Feature scaling enhances
performance for many kinds of models, and is particularly useful when feature
values are interpreted as distances between data points, such as in nearest-neighbor
algorithms.

Examples: normalization (proportionally scaling to a fixed range, usually [0, 1]),
standardization (centering data so that the mean becomes 0 and the standard
deviation 1), robust scaling (similar to standardization, but using the mean and
interquartile range) [dCC23].

Encoding [CLVZ11] stands for the encoding of features (e.g., categorical features in the
form of strings) to numeric representations (scalars or vectors), so that they can
be used by models accepting only numeric features, which are quite common.

Examples: hashing (applying a hash function to create a mapping between categor-
ical and numeric values), one-hot encoding (converting features to binary vectors
of their possible values, where 1 indicates the presence of the value, and 0 its
absence) [KNH+24].

2.4.2 Feature Engineering

Feature engineering designates the manipulation of features in order to optimize model
performance. Curating the selection of features and the information within them can
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help avoid overfitting the model and improve time performance, while mostly preserving
data quality and information. It is also possible to derive added meaning from existing
features, improving model results.

Feature generation focuses on generating new features by extracting or transforming in-
formation from existing ones.

Examples: Applying numeric operations (e.g., logarithm, square root), discretiza-
tion [DKS95] (transforming continuous features to discrete ones, often with binning
techniques: e.g., uniform, quantile, k-means clustering [Mac67]), extracting tem-
poral data (e.g., the day of the week from a date).

Feature selection refers to reducing the number of features by making a selection of those
most relevant to the target variable.

Examples: Forward feature selection (incrementally selecting one at a time), coef-
ficient of variation (ratio of variance to mean) threshold, RFE (recursive feature
elimination) decision trees, univariate correlation to the target [LCW+17].

Dimensionality reduction [vdMPv09, SVM14, JSLH22] means reducing the number of
features through transforming the data into a lower-dimensional representation, by
combining features while retaining essential information.

Examples: PCA—Principal Component Analysis [Pea01, AW10] (a linear technique
of projection to a coordinate system where the greatest variance lies along the first
axis or principal component, the second greatest variance along the second axis,
and so on), t-SNE—t-distributed Stochastic Neighbor Embedding [vdMH08] (a
non-linear technique preserving local relationships between data points), UMAP—
Uniform Manifold Approximation and Projection [MHSG18] (a non-linear tech-
nique preserving both local and global structures).

The transformation categories described above represent a broad overview of data prepa-
ration elements that generally support transformations for all data modalities, with our
examples mainly focusing on tabular data. Nevertheless, there are also transformation
categories specific to certain other data types, which could be considered in a wider
context. Examples include image manipulation such as resizing, filtering, or segmenta-
tion [SHB93], or NLP (natural language processing) techniques for textual data, such as
tokenization, vectorization, or translation methods [PBGN23].

2.5 Data Usability

One additional concept to consider is that of data usability. In the context of machine
learning, data being usable means that it can be processed by a given ML model. Us-
ability criteria can differ for different models. For instance, some models cannot run on
incomplete data, while others can handle missing values; some models can only process
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numeric data, meanwhile others support a wider variety of types. While not a goal in
itself, usability is a requirement for an ML system to function. It is achieved by applying
data transformations that address specific incompatibilities—in the previous examples,
handling missing values, or encoding certain data types.

2.6 Caveats

While transformations ensuring base compatibility between dataset and model may be
indispensable, the contributions of others can be more situational. The varying effective-
ness of data transformations in different cases has been pointed out in analyses of some
specific transformations. Examples include a study on the diminishing returns of missing
value imputation [MV25], or another that shows that balancing data with the SMOTE
algorithm is more pertinent for weaker classification models, and less so in the opposite
case [EA22].

Another aspect to consider when selecting transformations is their potential effect on in-
formation content [KEVDS19]. Information loss most commonly stems from the removal
of parts of the data, such as missing out on some fringe cases when removing outliers,
or slightly degraded predictions when omitting less relevant features. Altering informa-
tion content can have deeper effects on data analytics and ML result interpretation, as
exemplified in a fairness study [BR21] showing that certain data preparation elements
can introduce or enhance biases in the data, and suggesting alternatives to mitigate this
effect.

Additionally, explainability can also be affected by data preparation [GZ19, SK24]. Ex-
plainability is tightly connected to the transparency of selected data transformations. It
can be enhanced by some integration and cleaning operations, but also reduced by non-
invertible transformations that render the data more obscure, such as the PCA algorithm
or various aggregation functions. Result explainability also depends on the selected ML
model [Rud19].

3 Data Preparation: Pipelines

The data preparation process consists in constructing a pipeline of transformations to be
applied to the data, as part of the larger machine learning pipeline wherein it accompanies
modeling. In this section, we describe how data pipelines are designed and evaluated.

3.1 Pipeline Design

The design of data preparation pipelines is aimed at elevating the quality of the data, in
addition to ensuring compatibility and optimizing synergy with a model, all in service
of enhancing results. These goals can be achieved by optimizing a data transformation
sequence on datasets adequately set up for the task.
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3.1.1 Optimization Problem

Some experiments have suggested that, for certain datasets, optimal pipeline design can
be model-independent [Que19]. Nevertheless, there is no single best data preparation
pipeline that is the same for every possible problem, nor can we truly affirm that one
pipeline is a priori better than another in isolation. This question has notably been
addressed for data integration [Sd04], as well as for learning on imbalanced data [MM21].
It has also been studied for entire pipelines [GBA22].

In actuality, what constitutes the best data preparation pipeline for a given problem
is highly dependent upon the data format and contents, the machine learning task to
perform, and the model selected for the task. For a given ML algorithm, the main
considerations in designing this pipeline are:

1. Transformation selection—choosing data transformations to apply and sometimes
which features to apply them to;

2. Transformation ordering—architecturing the sequence of transformations;

3. Hyperparameter optimization—configuring transformation hyperparameter values
where applicable.

The pipeline optimization process is illustrated in Figure 3. Handling the three afore-
mentioned objectives allows for much flexibility. A data pipeline can contain multiple
instances of the same data transformation, possibly applied to different sets of features
and with different hyperparameter configurations. Though data pipelines are commonly
structured as linear sequences of transformations (as depicted in the figure), they can
also adopt acyclic graph structures [OM16], where some transformations are executed in
parallel. In this case, we can talk of a sequence of transformation steps, where each step
can consist of one or more simultaneous transformations.

Since the impact of data pipeline choices cannot be assessed without empirical evaluation,
we can regard pipeline design as a black-box optimization problem [AH17] whose search
space lies in the possible combinations along the three enumerated dimensions.

We can formally define the problem as follows. Let:

• D be a dataset (we deliberately consider an open dataset description, as modern
ML best practices include multiple options going beyond the basic train-test split,
namely when it comes to validation strategies. This is discussed in Section 3.1.3);

• A be a machine learning algorithm with a fixed hyperparameter configuration;

• T be the set of all possible data transformations, with T ∈ T a transformation
instance;

• ΛT be the hyperparameter configuration space of a transformation T , with λT ∈ ΛT
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Figure 3: Data preparation pipeline optimization

one specific hyperparameter configuration of T ;

• P be a data preparation pipeline configuration space, with elements P ∈
P. In a linear pipeline structure, elements are in the form of P =(
(T1, λT1), (T2, λT2), ... , (Tn, λTn)

)
, n ∈ N;

• L(P,A,D) be the loss achieved by a model trained with algorithm A, on dataset
D transformed by a pipeline P .

With L serving as an estimate of the model generalization loss, the optimal solution to
our data pipeline optimization problem lies in solving Equation (1):

P ∗ ∈ arg min
P∈P

L(P,A,D) (1)

Data pipeline optimization can also be considered in combination with the CASH (Com-
bined Algorithm Selection and Hyperparameter Optimization) [THHL13] problem, which
is central to AutoML. The search space is then extended to combinations of data
pipelines, ML algorithms, and algorithm hyperparameters. In addition to the previous
problem setup, let:

• Ā be the set of possible ML algorithms, with Ā ∈ Ā one (unconfigured) algorithm;

• ΛĀ be the hyperparameter configuration space of algorithm Ā, with λĀ ∈ ΛĀ one
specific hyperparameter configuration of Ā;

• A be the set of possible ML algorithms and implicitly their possible configurations,
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where each element A ∈ A has the form of A = (Ā, λĀ)

To include ML algorithm selection and associated hyperparameter optimization, Equa-
tion (1) is expanded into Equation (2):

(P, A)∗ ∈ arg min
P∈P, A∈A

L(P,A,D) (2)

3.1.2 Experience and domain insights

Beyond exploring the data pipeline search space, data preparation can be facilitated by
learning from experience with different datasets and pipelines, as well as by leveraging
domain knowledge, which implies knowledge about the data’s meaning, structure, and
context. When available, these two kinds of insights allow for informed decision-making
rather than operating in a purely black-box environment, leading to more efficient search
space navigation and faster convergence towards an optimal solution.

3.1.3 Dataset, Training, and Testing Considerations

As with the modeling process, where an ML model is trained on a training dataset and
evaluated on a test dataset, data pipeline optimization is also done with the help of the
training set. The same sequence of transformations is later applied to the test set before
evaluating the model on it, with a few exceptions—transformations that risk skewing the
evaluation process, such as for instance resampling transformations, which can distort
the data distribution by adding or removing data points, are not transferred to the test
set. Additionally, the inclusion of some transformations in the pipeline requires that
their inverses be applied before evaluation. For example, if the target variable is encoded
during preprocessing, comparisons with (unencoded) ground truth will fail—the variable
therefore needs to be decoded. The process for any other non-training data (such as a
validation set or newly incoming data) is the same as that of the test set.

Another point of importance with regard to the train-test mechanism is the process
of separating a dataset into training and test data. In a controlled environment, the
two sets should be disjoint, however in real-world conditions some overlap can occur.
In order to enable robust learning, so that patterns learned on the training set can be
relevant to a previously unseen test set, the two datasets should be sampled from the
same underlying data distribution in a representative way. Despite the most frequent
dataset splitting method being the random split—randomly assigning data points to the
two sets while only considering their proportional sizes—distribution similarity between
datasets can be promoted through the use of strategic sampling methods, such as k-fold
cross-validation [Sto74, RTL09]. A well-stratified and robust data split increases the odds
of finding an optimal data preparation pipeline in terms of generalization.

In addition to stratified sampling, ML processes often implement strategies to mitigate
the phenomenon of overfitting [Die95]. In the context of data pipelines, overfitting occurs
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if the pipeline design or its inner operations fit too closely to training data specifics, for
instance capturing noise, random fluctuations, or artifacts—which leads to poor general-
ization to new, unseen data. Therefore, a common ML practice is to split the data into
three datasets: (1) the training set is used to fit the pipeline (e.g., hyperparameters),
(2) the validation set is used to provide feedback to the training process with regard to
pipeline generalization performance (e.g., using AutoML), and, since repeated evaluation
on the validation data can also lead to overfitting of the pipeline design, (3) the test set
is used on the final optimized data pipeline to obtain a real, unbiased, estimate of its
generalization capabilities to new data. For both levels of splits (i.e., training-validation
and validation-test), different approaches can be employed, such as hold-out splits, cross-
validation, or other (nested) resampling strategies, typically depending on the chance of
overfitting and the cost of doing evaluations.

3.2 Pipeline Evaluation

Evaluating data preparation pipelines in a meaningful and objective way is quite chal-
lenging [Kum21, ALPS22]. As of yet, there are no standard benchmarks, methods, or
metrics specific to it. Instead, impact is usually quantified indirectly, through assessments
of data quality and model performance.

3.2.1 Evaluation through Data Quality

Data quality is of paramount importance when it comes to achieving reliable ML results
that adequately represent reality [MBF+25]. Evaluating data pipelines through the lens
of data quality implies comparing data quality before and after the application of a data
preparation pipeline. However, defining and measuring data quality is in itself a topic of
discussion [PLW02, BCFM09, Law17, JPN+20, SCvdS22]. Identifying quality facets to
consider and ways in which to quantify them are non-trivial problems.

In addition, data quality issues can be domain-specific [FFR22], which adds a layer of
complexity to the treatment of such data. For instance, in the case of outliers, without
domain knowledge it can be hard to tell whether an outlying point is an error, or actually
constitutes a relevant data point.

Moreover, not every data quality aspect or data transformation necessarily influences
the performance of every model in the same way. For example, in classification over
unevenly distributed data, a neural network classifier can significantly improve after
resampling the data to balance out its distribution [CPB25], while random forest models
tend to be more robust and may not need this kind of preprocessing to achieve similar
results [KGH07, DKN15].

These kinds of inconsistencies with regard to evaluating data across different models
call for consideration of the selected model in the evaluation process of data preparation
pipelines.
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3.2.2 Evaluation through Model Performance

The most common way to evaluate data preparation is through downstream model per-
formance, i.e., assessing model loss after training on data transformed by a given pipeline.
While this is certainly a pertinent indicator, it is in fact a measure of how well the model
fits the data, rather than how well the model fits reality. Equating strong model perfor-
mance with good data preparation can be risky due to questions of data quality and the
possibility of underlying biases.

In order for results to be pertinent, it is also particularly important for the model loss
metric to be carefully selected so as to be adequate for the problem. Even then, model
performance may not be entirely reliable, since its score can increase from overfitting.
In actuality, this makes the model worse, though the effect can be mitigated through
validation strategies, e.g., cross-validation [Sto74, RTL09], or robustness techniques such
as early stopping or regularization [SHK+14, Yin19].

This method of evaluating data preparation by measuring model performance is therefore
directly dependent on data quality and the robustness of the model evaluation. It is also
quite costly, since it requires a model to be trained on every pipeline. However, this
remains the most accessible and dependable evaluation method to date.

3.2.3 Transformation Interactions

If we consider individual or groups of transformations within a pipeline, evaluation is
additionally complicated by interactions between data transformations: applying one
transformation can affect the behavior of a subsequent one. For example, removing out-
liers can change the span of values of a feature, and consequently the effectiveness of
normalization. This makes it very difficult to measure the impact of a single transfor-
mation in isolation, or to identify which parts of the pipeline contribute to performance
improvement or degradation, though there are some promising beginnings in this direc-
tion [GZ19, SK24].

3.2.4 Benchmarks, Tools, other Evaluation Methods

Setting aside methodology, we also encounter a lack of standardized benchmarks for
data pipeline evaluation [OMB+24]. Unlike certain ML subfields that benefit from well-
known datasets conventionally used for their model-centric benchmarks, such as Ima-
geNet [DDS+09], CIFAR-10/100 [LBBH98] and MNIST [Kri09] for image classification,
or GLUE [WSM+19] for natural language processing, the domain of data preparation, or
more broadly that of data-centric ML, has yet to establish a consensus on benchmarking
criteria and datasets [OMB+24].

Nonetheless, some recent works have begun to tackle various aspects of evaluating data
preparation pipelines specifically. One proposition is an automated provenance-based
screening [SGG24] method, modeling data preparation pipelines into dataflows used to
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detect certain types of mistakes and generate metadata information. The ML Data Prep
Zoo [SK19] presents a repository of data preparation tasks, labeled benchmark datasets,
and pre-trained ML models, providing the tools to create and evaluate automated so-
lutions to various data preparation tasks. The GouDa [RBCS22] tool automatically
generates flawed datasets that, along with their ground truth, facilitate the analysis and
evaluation of data preparation pipelines. Dcbench [EKR+22] is a benchmark for the
evaluation of select components of data-centric AI systems. DataPerf [MBY+23] pro-
vides another collection of data-centric algorithm benchmarks for multiple ML tasks, as
well as a community platform allowing new benchmarks to be added. Additional bench-
marking datasets can be found on the OpenML [VvRBT14, BCD+25] platform. Such
methods, tools, and collections pave the way towards a better understanding and a more
structured approach to pipeline design and evaluation.

4 Automated Data Preparation in AutoML

In order to assess the state of data preparation in automated machine learning (Au-
toML), we explore the data transformation categories implemented by different AutoML
solutions, as well as the decision processes in charge of handling them.

4.1 Overview of Relevant AutoML Systems

We compile a collection of AutoML systems with support for tabular data relevant to
this survey according to the following criteria:

(1) Providing end-to-end automation. This excludes approaches that are not fully
automated and require human interaction. Notable systems eliminated by this cri-
terion include: Alpine meadow [Kra18, SZB+19], AutoML-DSGE [ALRM20], Au-
tostacker [CWM+18], Auto_ViML [fea19], Auto tune models (ATM) [SDC+17],
dabl [dab16], Ludwig [MDM19], MOSAIC [RSS19], Neural Network Intelligence
(NNI) [Mic18b], REsilient ClassifIcation Pipeline Evolution (RECIPE) [dPOP17], Trans-
mogrifAI [Sal17].

(2) Covering the whole ML pipeline or at minimum the whole modeling phase. This
excludes approaches addressing only inner ML components or parts of the pipeline that
do not interact with data preparation directly, e.g., neural network search (NAS) systems
such as NASLib [RZS+20], Katib [ZVP+19], Hypernets [YLW20].

(3) Being open source and providing public documentation with enough information for
our study. This ensures that our information about the considered systems is reliable
and relatively easily verifiable. This selection notably excludes closed-source commercial
systems from some of the biggest industry players in AI and AutoML: Google Cloud Au-
toML [Goo18], DataRobot AI Cloud [Dat15], H2O.ai Driverless AI [H2O20], Microsoft
Azure Machine Learning AutoML [Mic18a], Amazon SageMaker Autopilot [Ama19], Or-
acle AutoML [YMM+20]. It is, however, worth noting that these typically do contain
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data preparation elements. Published research solutions lacking supporting code, such
as Alternating Direction Method of Multipliers (ADMM) AutoML [LRV+20] and Auto-
Compete [TK15], are also excluded.

(4) Being reasonably usable (projects that are still maintained, or left in a stable state).
This eliminates deprecated, outdated or unmaintained solutions.

Below are the AutoML systems that we retain for consideration. We categorize them
according to the way in which they handle data preparation: separating those that
perform preset or rule-based data treatment—systems with static data preparation, and
those whose optimization algorithm also covers data preparation pipelines—systems with
optimized data pipelines. We do not differentiate systems by the ML tasks they target
or other modeling factors, keeping our focus on data preparation aspects instead.

4.1.1 Static Data Preparation Systems

Oboe (& TensorOboe) [YAKU19, YFWU20] is a meta-learning-based [Sch87,
HAMS21] AutoML system using collaborative filtering [GNOT92, SKKR01] to predict
model performance under resource constraints; TensorOboe extends the method with
tensor completion [LMWY13] and adds more robustness with regard to data quality.

AutoML-Zero [RLSL20] is a research prototype exploring the evolution [BBBMM14]
of complete machine learning algorithms from a set of basic mathematical operations,
i.e., "from zero".

FLAML (Fast and Lightweight AutoML) [WWWZ21] is an AutoML library designed
for efficiency, using lightweight learners and resource-aware tuning without heavy search.
It supports integration with the Fabric data platform, as well as the MLOps platform
MLflow.

AutoKeras [JCSH23] is an AutoML system based on the Keras [Cho15] deep learning
library, which performs neural architecture search and model tuning on image, text, and
multimodal data. As of today, tabular data is no longer included in the official module,
though it is available through an extension [DB17].

H2O AutoML [LP20] is an enterprise-ready, scalable AutoML solution using ensem-
bling [Die00], and offering model interpretability and integration with the H2O analytics
platform.

BlueCast [Tho23] is a fast and lightweight AutoML library mainly featuring XG-
Boost [CG16] models. It also includes optional user customization and a data toolkit for
more advanced tasks, as well as explainability features.

Auto_ml [Par16] is a simplified AutoML package designed for production. It allows
automatic training of multiple models of the same kind based on a chosen data split (e.g.,
a separate model for every country from worldwide data).
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MLJAR-supervised [MLJ18] is an AutoML tool with different modes for fast proto-
typing, explainability, and deployment-ready outputs.

TabPFN [HMEH22, HMP+25] is a foundation model [BHA+22] for small datasets that
near-instantly produces highly accurate predictions, without the need for hyperparameter
tuning.

AutoGluon [EMS+20, STE+23, TFZ+24] is a versatile AutoML solution supporting
tabular (AutoGluon-Tabular), time series (AutoGluon-TimeSeries), multimodal
with image and text (AutoMM) data, and performing automatic ensembling and fine-
tuning of foundation models.

Naïve AutoML [MW22] is a naïve AutoML tool useful for baseline comparisons, that
combines basic preprocessing with random search. Its efficiency lies in optimizing each
pipeline component in isolation, thus significantly reducing its search space.

MLBox [de 17] is an AutoML library focused on data drift detection [AFR+20], prepro-
cessing, and model optimization.

LightAutoML [VRS+22] is an AutoML library optimized for performance, inter-
pretability, and production deployment.

ML.NET AutoML [AAB+19] is a framework for .NET developers, which provides
seamless integration with .NET applications. It supports tabular, text, and image data.

4.1.2 Optimized Data Pipeline Systems

Auto-WEKA (& 2.0) [THHL13, KTH+17] is an extension of the WEKA [HDW94]
data platform that automates algorithm and hyperparameter selection using Bayesian
optimization [SLA12, Gar22]; v2.0 features multi-objective search.

HyperOPT-sklearn [KBE14] is a wrapper for scikit-learn [PPV+11] models with
Hyperopt-based [BYC13] Bayesian optimization for algorithm and hyperparameter opti-
mization.

TPOT (The Tree-based Pipeline Optimisation Tool) [OM16, GVO17, PNJK19] is an
AutoML system that uses genetic programming [BBBMM14] to evolve ML pipelines;
Layered-TPOT and TEAPOT-SH variants improve efficiency via hierarchical search
(evaluating pipelines on increasingly large data subsets) and successive halving [JT16].

EDCA (Evolutionary Data-Centric AutoML) [SC25] is an efficient AutoML solution that
optimizes the entire ML pipeline. It performs data analysis, followed by the selection
and optimization of data preparation steps and a model, using a genetic algorithm.

ML-Plan (& ML2-Plan) [MWH18, WMTH19] is a hierarchical planning-
based [EHN94] AutoML system for constructing ML pipelines; ML2-Plan adapts the
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method for multi-label data.

DeepLine [HVKR20] is an AutoML tool that relies on meta-learning, deep reinforcement
learning (RL) [KLM96, Sut98] and hierarchical actions filtering to generate machine
learning pipelines.

AlphaD3M [LLR+23] is an AutoML library that automates data pipeline and model
optimization by combining deep reinforcement learning and meta-learning. It is part of
a broader project (D3M) aiming to automate data science.

Auto-sklearn (& 2.0) [FKE+15, FEF+22] is a scikit-learn-based AutoML system
using Bayesian optimization via SMAC [LEF+22] and meta-learning; v2.0 improves effi-
ciency with early stopping via successive halving and with task-specific portfolios (pre-
defined pipelines).

GAMA (General Automated Machine Learning Assistant) [GV21] is an AutoML tool us-
ing genetic algorithms to evolve and ensemble machine learning pipelines asynchronously.

Auto-PyTorch [ZLH21] is an AutoML toolkit for deep learning using Py-
Torch [PGM+19], automating neural architecture and hyperparameter search for tab-
ular, time series, and image data, by using Bayesian optimization, multi-fidelity [FSK07,
KFB+17, FKH18], meta-learning, and ensemble construction.

FEDOT [NVS+22] is an AutoML framework employing meta-heuristic evolutionary
methods for learning and optimization on graph-based pipelines. FEDOT can handle
tabular and multimodal data, with text, image, and time series.

4.2 Analysis

We proceed to an analysis of data preparation in the selected AutoML systems, supported
by a comparative table. Alternative comparisons of a similar kind can be found in some
earlier AutoML studies [TWG+19, Kra20, BAI+22], but covering different (smaller) sets
of transformation categories and AutoML systems.

4.2.1 Setup

Table 1 presents a breakdown of automated data preparation elements that are imple-
mented in our list of AutoML systems, organized according to transformation categories,
functions, and purposes, as described in our taxonomy in Section 2. In the last column,
titled DP Optimization, we differentiate between systems with data treatments that are
fixed or arbitrarily decided, and ones that optimize a data preparation pipeline along
with the model. We order the systems based on (1) whether they perform optimized
data preparation, (2) the number of transformation categories they cover, and (3) their
publication date.

We consider only explicit data preparation operations, as opposed to ones implicitly
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performed by certain models in the model selection pool of an AutoML system (e.g.,
some tree models inwardly doing their own feature selection). The information in the
table reflects the state of each AutoML system to the best of our knowledge, according
to the contents of their corresponding research papers, documentation, and code.

4.2.2 Findings

Table 1 demonstrates that, barring a few exceptions, automated data preparation in
AutoML systems today is by and large focused on model performance optimization, in
line with the traditional model-centric trend in ML and AutoML in general.

The most frequently present transformations are feature engineering ones (feature gener-
ation, feature selection, and dimensionality reduction) and feature-oriented preprocessing
ones (scaling and encoding), emphasizing the prioritization of model performance, via
features in particular. The only other consistently represented transformation categories
are the cleaning of missing values, which can completely obstruct the function of many
models, and sometimes data type handling. These indicate added consideration for the
most common obstacles to a functioning model.

There is a notable lack of transformations centered around data quality, excepting the
cleaning of missing values. Likewise, more complex data integration (dataset merging,
content alignment) going beyond the minimum of loading and interpreting data types,
is almost entirely absent. Preprocessing transformations dealing with data points as
opposed to features are also underrepresented. This reveals a tendency to rely on the
model’s capabilities to overcome potential data issues such as noise, inconsistencies, or
imbalance, while only treating data as far as making it viable for use.

From a methodology point of view, the table exhibits a mix of AutoML systems that
include data preparation in their optimization process, and those that apply preset trans-
formations or follow a rule-based logic. Research-oriented solutions appear to lean to-
wards optimization more than their production-oriented counterparts, potentially leading
to questions about the theoretical versus practical efficiency and effectiveness of the two
approaches.

5 Semi-Automated Data Preparation

Semi-automated data preparation encompasses approaches that partially automate the
data pipeline or fully automate a particular part of it. While some aspects of data
preparation can be automated, it has been suggested that others require human inter-
vention [DBDRH+22]. Beyond expanding upon the set of transformation categories that
can be automated, as seen in Section 4.2, we further seek to gain a better understanding
of the importance of human contributions in the data preparation process, and whether
the human component presents an obstacle to fully automating the pipeline.
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In the following subsections, we provide an overview of various semi-automated method-
ologies, structured according to the different ways in which they integrate automated
components, and the role of the human within their workflows. Though not all of these
approaches are aimed specifically at machine learning applications, they can nonetheless
deliver significant value in an ML context.

As a great many semi-automated tools and approaches exist in literature, it is quite
possible that our collection may not be exhaustive. However, it provides a comprehen-
sive overview, from well-known frameworks to newer methods, with a variety of semi-
automation approaches which, put together, cover virtually all the data preparation
categories presented in Section 2.

5.1 Full Automation of Parts of the Pipeline

The tools and frameworks below are specialized in automatically treating select parts of
the data preparation pipeline.

ColNet [CJHS19] automatically annotates table columns with semantic types by pre-
dicting them based on column contents and a knowledge base, using convolutional neural
networks (CNN) [LBH15] along with semantic embeddings [CP18].

UniDM (a Unified framework for Data Manipulation) [QHZ+24, LDZ25] leverages large
language models (LLM) [VSP+17, MMN+25] for various data preparation tasks. It
breaks automated data manipulation down into three steps with prompts specifically
designed for them: context retrieval to capture knowledge from data lakes, context data
parsing to reshape the knowledge into natural language, and target prompt construction
to design and effective LLM prompt for the data preparation task at hand.

Skrub [skr18] is a Python library that aims to “directly connect database tables to
machine learning estimators”. It offers advanced automated tools that smartly handle
multiple complex data transformation categories, going beyond the basic transformations
found in more typical data preparation solutions. The library is still under development,
with additions of new submodules for a wider range of functionalities.

ExploreKit [KSS16] performs automatic feature generation. It generates a large num-
ber of features by combining existing ones, then uses its ML-based feature selection
process to predict the usefulness of the new features and to select the best ones.

AutoLearn [KMP17] is a regression-based feature learning algorithm for automated
feature generation and selection. It analyzes pairwise feature relationships, then generates
new features based on discovered insights, and finally makes a selection by finding the
best predictors via regression.

TSFresh [CBNK18] is a Python library for automatic time series feature extraction and
selection. It generates features using pre-defined time series characterization methods,
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then makes a selection via hypothesis testing, using p-value calculation with multiple
testing.

FeatLLM [HYAP24] is a LLM-based system that performs automated feature engi-
neering. It makes use of LLM capabilities to generates prompts for feature generation
augmented by domain knowledge, as well as for informed feature selection.

5.2 Human-in-the-Loop Approaches

Human-in-the-loop approaches refer to ones that include both automated processes and
the involvement of a human user. The methods in this category can be subdivided into
single-interaction systems, where the user only intervenes at the beginning of the process
while the rest of it is fully automated, and systems that operate in an interactive loop of
human and automated elements, constructing their pipeline in an iterative process.

5.2.1 Single Interaction

The methods below enable automated data preparation with the help of a single human
intervention that provides insights into the data or examples of data treatment to learn
from. As such, they can also be classified as human-guided automation methods.

FlashExtract [LG14] automatically extracts raw data from text files, webpages,
spreadsheets. Using human-generated examples, it synthesizes extraction scripts in a
domain-specific language.

The Deep Feature Synthesis [KV15] algorithm and the supporting FeatureTools tool
are geared towards automated feature creation. They extract feature tables from rela-
tional database-type structures.

SampleClean [KWF+15] proposes a method consisting in manually cleaning only a
sample of database data, then using it to automatically estimate aggregate query re-
sults on dirty data. It is accompanied by ActiveClean [KFG+16], which extends the
concept to some ML models, by selecting data to prioritize cleaning for during training.
BoostClean [KFGW17] takes this a step further, identifying both the data to clean
and a cleaning method for it, using statistical boosting [Sch90, Sch03] and Word2Vec
word embeddings [MCCD13]. Lastly, AlphaClean [KW19] fully automates the design
and parameter configuration of entire data cleaning pipelines.

Data programming [RDSW+16] presents a paradigm for creating and modeling labeled
training datasets. For an unlabeled or partially labeled dataset, users encode weak
supervision by way of labeling functions, which each provide a label for a subset of the
data. The collection of labeling functions forms a generative model, allowing the dataset
to be denoised through making decisions on overlapping labels, by learning the accuracies
and correlation structure of the labeling functions.

HoloClean [RCIR17] is a data cleaning framework for value correction using proba-
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bilistic inference [Nea93, Box11]. It relies on human input in the form of constraints and
metadata, and can also accept feedback on its data repairs.

CPClean [KLW+20] performs data cleaning with the aid of a human who provides
ground truth information. Its algorithm is rooted in the concept of Certain Predictions,
aiming to correct the data in such a way that any predictor would give the same prediction
results.

Raha [MACF+19] and Baran [MA20] are tools for value error detection and correction,
respectively. The detection system is configuration-free and relies on the generation of
feature vectors to cover various types of data errors. The correction system uses transfer
learning for multiple error correction, with the aid of context-aware data representation.
The systems are highly automated, requiring only a few initial user-provided examples.

HAIPipe [CTF+23] is a system combining human-generated pipelines (HI-pipelines),
designed with domain knowledge and experience, and machine-generated ones (AI-
pipelines), which are search-based and optimized, into a best of both worlds solution. It
uses an enumeration-sampling strategy to find the best combined pipeline: enumerating
possible pipelines and using active learning [CAL94] to select the best-performing one.

5.2.2 Interactive Loop: Human-Guided Automation

An interactive loop implies back-and-forth exchanges between human and automation in
the pipeline optimization process.

Interactive approaches also present multiple examples of human-guided automation,
where the design of the data pipeline is mostly automated, but with the guidance of
a human user. The user can contribute in different ways depending on the system, such
as analyzing the data, highlighting areas that require attention, or providing feedback
on results.

Feedback-driven improvement of data preparation pipelines [KP20] is an approach where
the user guides an otherwise automatic data preparation process, by providing feedback
regarding resulting data after transformations are applied. The provided feedback rep-
resents correctness criteria.

Rain [WFWW20] is a complaint-driven training data debugging system. It uses hu-
man feedback on dataset queries to resolve issues and improve dataset contents through
heuristic approaches based on influence functions [KL17].

Cleaning for ML rather than before ML [NCA+21] is an interactive architecture proposal
for cleaning data during the training process using model feedback, instead of cleaning
independently before training. While the cleaning workflow is automatically generated
and evaluated over time, the user is integrated into the loop to oversee the process and
provide signals aiding decision-making, such as annotating errors or certain properties.
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AlpineMeadow [Kra18, SZB+19] is an interactive AutoML tool providing a user-guided
way of curating ML pipelines in an effort to simulate a data scientist’s process. The
system combines query optimization ideas and pipeline optimization methods such as
Multi-Armed Bandits [Rob52, Sli19], Bayesian optimization [SLA12, Gar22], and meta-
learning [Sch87, HAMS21], with human input in the form of feedback at every step.

The Automatic Statistician [SSJ+19] presents a vision for automated data science
frameworks with minimal human intervention. Beginning at raw datasets, the concept
covers data preparation, modeling, evaluation and insights. It also includes considerations
for explainability and resource budget. Interactions with users in natural language are
envisioned through automatically generated reports. The user guides the system by
indicating certain preferences such as model and evaluation methods, areas of interest in
the data, or resource constraints. Every other aspect of the process is automated.

Learn2Clean+HIL (Learn2Clean with Human-In-The-Loop) [Ber20] is an extension
of the automated reinforcement-learning-based [KLM96, Sut98] data preparation system
Learn2Clean [Ber19a]. In this variant, a human user is integrated into the process in
order to actively give regular feedback to the system through a manual mechanism for
RL rewards.

5.2.3 Interactive Loop: Human Assisted by Automation

Another kind of approach interactively integrating human and automation is one where
the roles are reversed: a user constructs a data preparation pipeline with the assistance
of an automated system. In this format, the automation usually includes a preliminary
data analysis or an optimization process, in order to provide recommendations to the
user that help build or improve the data pipeline.

Data Diff [SHGC18] performs automated data wrangling on data that is periodically
resampled, by detecting certain types of differences (inconsistencies/corruptions) and
patching (fixing) them using transformations in a domain-specific language. If an auto-
matic patch is not feasible, it informs the user.

Auto-Prep [BAI+22] is a partially automated data preparation solution that detects
the data problem (ML task), generates visualizations, and makes data cleaning and
preparation recommendations. The user then performs actions based on those insights.

Predictive Interaction [HHK15] is a framework design that provides data visual-
izations, lets the user choose features of interest from them, and then uses predictive
methods to suggest data transformations accordingly. This process is repeated in a loop
where the system provides guidance while the user makes decisions.

ChatPipe [CLJ+24] allows a user to design a data preparation pipeline through in-
teractions with the ChatGPT [RNSS18, BMR+20, OAA+24] LLM. The system creates
ChatGPT prompts based on the problem and wishes expressed by the user, who in turn
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receives recommendations for subsequent data preparation transformations, as well as
automatically generated code.

Another LLM-based approach is that of interactively improving data preparation code
by automatically generating shadow pipelines [GGS24]. It consists in generating variants
of an original pipeline that detect issues, try improvement modifications, and suggest
and explain them to the user, using LLMs. The user can then choose to integrate these
changes.

5.3 Approach Summary and Pipeline Coverage

Similarly to the setup in the previous section, Table 2 reflects the data preparation cover-
age of the semi-automated systems above, relative to the transformation categories, func-
tions, and purposes described in the taxonomy in Section 2. Three additional columns are
included to illustrate the variety in approaches, outlining which tasks are undertaken by
humans and which by automation, and how the two interact. The systems are ordered by
(1) semi-automation approach, (2) transformation categories, and (3) publication date.

The Guidance column indicates whether the human or the automation (or both/neither)
provides guidance to their counterpart within the data preparation process. This assis-
tance can come in different forms, such as offering examples, data insights, or transfor-
mation recommendations.

The Action-taking column indicates whether the human or the automation (or either)
has the final say in terms of making decisions and performing transformations on the
data.

The Interactive loop column indicates whether the system involves an iterative back-
and-forth process between human and automation while constructing a data preparation
pipeline—as opposed to a fully automated approach, or a one-shot interactive approach
where one actor (human or automation) participates at the beginning of the process, and
the other actor then takes over without further interactions between the two.

5.3.1 Pipeline Coverage Observations

Regarding explicit pipeline coverage in terms of data transformation categories, we note
that, with a few exceptions, the systems that actually implement transformations tend
to concentrate on a single transformation function. On the one hand, we have tools from
the database community centered around data integration or cleaning (mostly value cor-
rection), and on the other hand, tools focusing on feature engineering (feature generation
and selection) from more ML-oriented works.

Looking back at the transformation categories covered by AutoML solutions (c.f. Sec-
tion 4.2), where we saw that data preparation in AutoML was majorly centered around
feature transformations, it is interesting to find that many semi-automated systems that
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do not include a human component likewise focus on feature manipulation. Conversely,
semi-automated approaches show more inclination towards data integration and cleaning
than their AutoML counterparts, especially in the areas of parsing, content alignment,
and value correction. These categories are plausibly where human insight is most needed,
and may thus be the hardest to automate.

While fully automated approaches and some partly automated ones offer concrete imple-
mentations of both their methods and data transformations, others are more conceptual
in nature—particularly when it comes to data transformations. Table 2 reflects this,
as several frameworks propose methods with the potential to integrate the entire data
preparation pipeline, without necessarily addressing the specifics of individual transfor-
mations. Instead, these systems primarily focus on pipeline design methodology.

5.3.2 Further Automation Perspectives

The semi-automated solutions examined in this section present a variety of ways to com-
bine human and automated components. Some necessitate regular human participation,
yet others require it only once. Some rely on human data insights and automate pipeline
construction, while in others these responsibilities are reversed. The main value of hu-
man input when it comes to data preparation is generally considered to be their domain
knowledge and technical expertise. The design choices in semi-automated systems indi-
cate that this input still holds value. Yet, the differing degrees of human intervention
and possibility or role reversal with automation would suggest that any aspect of the
data preparation process could selectively be automated—sustaining the prospect of au-
tomating all of them in a unified process. The question remains whether this is feasible
without compromising results, i.e., whether automation alone can adequately compensate
for human contributions.

6 Automated Data Preparation

Having explored the extent of data preparation in automated machine learning and exam-
ined semi-automated data preparation approaches, we now turn to fully automated data
preparation. For this category of approaches, we take into consideration systems that are
specialized in automating data pipeline optimization, as well as AutoML systems whose
optimization process covers the data pipeline along with the model (c.f. Section 4.1.2,
Section 4.2).

6.1 Methodologies and Examples

Underlying methodologies for the optimization of data pipelines range from traditional
optimization techniques, such as heuristic search and Bayesian optimization, to emerging
ML paradigms such as foundation models. Some also integrate techniques for context-
awareness [CTFL23] through the use of language models (word embeddings, LLMs), or
learning from experience [GBA22] via transfer or meta-learning, in order to make the
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process more effective and efficient. We review these different approaches with the aim
of extracting a structured overview of relevant methods along with their advantages,
limitations, and particularities. A comparative summary of our findings is available in
Table 3.

6.1.1 Sequential Model-Based Optimization

SMBO (Sequential Model-Based Optimization) [JSW98, BLP05, HHL11] is one type of
method that be used to automatically optimize data preparation pipelines. An SMBO
method navigates its search space with the help of a surrogate model that approximates
the objective function, i.e., in our context, a loss function. The surrogate model is built
by fitting data pipelines to models, training them, and evaluating them. It iteratively
selects new points to evaluate by optimizing an acquisition function, which balances ex-
ploration and exploitation. The surrogate model is updated at every step based on the
newly evaluated point. The most commonly used SMBO method is Bayesian optimiza-
tion [SLA12, Gar22], where the surrogate model is probabilistic, such as a Gaussian
process [Ras04].

SMBO methods allow for efficient optimization while focusing on the most informative or
promising areas of the search space. Depending on the underlying surrogate model, they
may become inefficient at greater scale, though there have been advances to mitigate
that effect [EPG+19]. They are explicitly designed to support budget restrictions in the
form of limited evaluations. Through the choice of interpretable surrogate models, they
may in some cases provide explainability.

SMBO techniques have proven capable of automatically optimizing data pipelines
with different surrogate functions—SVMs, neural networks, random forests, decision
trees [HFT01]—in a fixed-architecture DPSO (Data Pipeline Selection and Optimiza-
tion) [Que19] setup.

There are also multiple examples of Bayesian optimization approaches among
AutoML solutions that include data pipeline optimization, such as Auto-
WEKA [THHL13, KTH+17] and HyperOPT-sklearn [KBE14]. Others, namely
Auto-PyTorch [ZLH21] and Auto-sklearn [FKE+15, FEF+22], rely on a Bayesian
optimization base algorithm augmented by combinations with other approaches.

6.1.2 Evolutionary Algorithms

Evolutionary algorithms [BBBMM14] are optimization methods inspired by biological
evolution and natural selection processes. They can iteratively optimize data preparation
pipelines by evolving a population of candidate solutions in the form of data pipelines,
over successive generations. At each iteration, the pipelines are evaluated according
to a fitness function, corresponding to the downstream model’s loss function. The best-
performing candidates are retained. Those pipelines evolve into a next generation through
mechanisms such as mutation via the addition, removal, swapping, or hyperparameter
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reconfiguration of data transformations, or crossover combinations with other pipelines.

Evolutionary approaches promote exploration, and are well-suited for complex black-
box optimization problems. They can implement budget restrictions by limiting the
population size and the number of generations, and offer some explainability by tracing
back the evolution process. Depending on the optimization landscape and algorithm
settings, their main limitation is that they may be slow to converge.

Evolutionary algorithms are the optimization method of choice for several AutoML
systems with data pipeline optimization, namely FEDOT [NVS+22], GAMA [GV21],
TPOT [OM16], and EDCA [SC25].

6.1.3 Hierarchical Planning

Hierarchical planning [EHN94] draws on AI planning concepts to break down complex
tasks into simpler subtasks. This can be done recursively, resulting in multiple levels of
subtasks. Decisions are made at each level using search, typically best-first search [Pea84,
DP85] or anytime search [HZ07], and evaluation. The principle can be applied to build
ML or data pipeline construction in a top-down manner, by treating the construction
process as a hierarchical task decomposition problem [EHN94]. The highest level task
would be the goal itself: pipeline optimization. It can then be decomposed into subtasks
at multiple levels. For instance, one subtask could be transformation category selection,
then at the next level transformation operation selection within a category, and then
hyperparameter configuration.

Hierarchical planning provides a structured search approach, which offers transparency
and interpretability. It evaluates partial pipelines and prunes weak performers, making
it quite efficient. In addition, it can provide a solution at any time (but also further
refine it), allowing for a form of budget control. Its drawbacks are its dependency on the
quality of underlying heuristics, overhead that can result from recursive decomposition
and search, and its sequential nature, which limits parallelism.

The ML-PLAN [MWH18, WMTH19] AutoML system uses hierarchical planning to build
ML pipelines. Using a hierarchical task network (HTN) process, it decomposes the task
into feature preprocessing and modeling decisions at multiple levels.

6.1.4 Gradient Descent

Gradient descent [HFT01, Boy06] algorithms, very common in ML, optimize model pa-
rameters by iteratively calculating the gradient of the loss function and adjusting param-
eter values so as to minimize the loss. Though they are typically used for the downstream
ML model’s parameters rather than data preparation pipeline optimization, gradient de-
scent algorithms can also be employed for the latter, as long as the pipeline construction
process is modeled to be differentiable. The main benefit of using gradient descent for
this problem is that it can optimize the data pipeline along with the model as a bi-level

32



optimization problem, thus training the model only once—unlike most other methods
that require repeated training with different pipelines.

Gradient descent is a very efficient optimization approach, but only works with differen-
tiable downstream ML models. It also bears the risk of the gradient getting stuck in local
minima, thus a proper tuning of hyperparameters, in particular the learning rate, is im-
portant. Gradient descent additionally allows for limited budget considerations through
techniques such as early stopping.

DiffML [HHR+23] is an approach that consists in making whole ML pipelines, including
data preparation pipelines, differentiable. It achieves this by expressing different pipeline
possibilities as a so-called mixture of pipeline alternatives, whose weights can be opti-
mized during the training process. By making the complete machine learning pipeline
differentiable, this approach allows for combined data pipeline and model optimization
with gradient methods.

DiffPrep [LCCR23] for tabular data is a method for data preparation pipeline searching
along with model optimization, for differentiable ML models. It treats the problem as a
bi-level optimization problem, minimizing training loss for the model training, and valida-
tion loss for the data pipeline design process. By relaxing the discrete non-differentiable
pipeline search space into a continuous differentiable one [LSY19], this approach allows
for pipeline optimization via gradient descent, jointly with model optimization.

6.1.5 Reinforcement Learning

Reinforcement learning [KLM96, Sut98] systems learn by performing actions in a mod-
eled stateful environment. They receive environment feedback for those actions in the
form of rewards following changes of state, and adjust their future behavior accordingly—
thus iteratively shaping their decision policy. In the case of data preparation pipeline
construction, actions correspond to data transformation decisions, while rewards rep-
resent downstream model performance. The developed decision policy is what guides
pipeline construction, and the result is an optimized data pipeline.

RL approaches are typically good at modeling sequential tasks and learning long-term
consequences of actions. However, they often require a large number of training loops,
and may not converge in a stable manner.

Learn2Clean [Ber19a] relies on the Q-learning [Wat89, WD92] reinforcement learning
technique to perform data preparation on Web data, which usually implies large amounts
of dirty data. The system takes a dataset, ML model, and an evaluation metric as input.
The choice of Q-learning allows for a relatively lightweight RL system despite the large
search space due to its model-free nature, as well as a flexible one thanks to frequent
reward updates for performed actions. Q-learning is typically effective on small search
spaces, but may not always scale well.
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HAIPipe [CTF+23] is a semi-automated approach to data preparation, that includes
automated data pipelines called AI-Pipes as one of its components—the other being a
human-generated pipeline to combine with it. For our purposes, we focus on how this
approach generates AI-Pipes. It proposes a method for the iterative design of pipelines
based on DQN (Deep Q-Network) [MKS+15] reinforcement learning. The DQN tech-
nique offers better scalability to large state spaces than tabular Q-learning, but is more
computationally expensive.

CTXPipe [GCD+24] is a system for context-aware automated data pipeline design. It
is able to integrate additional context into the process by using pre-trained semantic
embedding models [CP18]. This approach provides the system with domain expertise by
allowing it to augment its training data through the extraction of semantic insights from
it. With this added information, the system constructs data preparation pipelines using
DQN reinforcement learning as its optimization method.

We can also find AutoML systems that optimize the data pipeline with reinforcement
learning, such as DeepLine [HVKR20], which uses other techniques in addition RL to
further enhance its optimization process.

6.1.6 Meta-Learning

Meta-learning [Sch87, HAMS21] is a process of learning to learn through prior experi-
ence. In the case of data preparation, by training many different data pipelines on many
different datasets, meta-learning methods can capture knowledge about the pipeline op-
timization process by extracting common patterns. This provides them with strong
generalization capabilities and fast convergence. Instead of learning how to optimize a
pipeline for each dataset from scratch, meta-learning systems can leverage their gath-
ered knowledge to efficiently construct data pipelines for previously unseen datasets.
Nonetheless, the overhead in training a meta-learning model can be quite heavy.

One solution for automated data preparation via meta-learning [BAAW16] employs meta-
learning concepts to evaluate positive or negative effects of different data preparation
transformation applications within a ML pipeline. It then provides a transformation
ranking, i.e., a set of recommended transformations to apply to the data.

MetaPrep [ZSDSS+21] is an automated data preparation system based on meta-
learning. Trained on a collection of example datasets and data pipelines, the system
learns by extracting meta-knowledge in the form of data characteristics, model eval-
uations after applying data pipelines, and dataset similarity indicators. It can sub-
sequently apply that knowledge to create quality data preparation pipelines for new
datasets. MetaPrep returns the five best pipelines among those generated.
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6.1.7 Foundation Models

Foundation models [BHA+22], such as large language models (LLM) [VSP+17,
MMN+25], are large pre-trained models that are trained on massive amounts of data.
They offer general-purpose utility for a wide range of downstream tasks. Using vast
corpora of language data from a great diversity of domains, LLMs learn broad language
patterns that allow them to restore their knowledge by generating natural language,
as well as programming code. For the purpose of building data preparation pipelines,
LLMs can recommend data transformations and provide corresponding code. They can
also optimize pipelines through repeated interaction to further improve their output.

LLMs offer unique upside in their ability to access domain knowledge outside of the user-
provided data. However, LLMs also come with some known downsides: they are initially
very expensive to train, their inference process is costly, and their generated output
is not always reliable—they sometimes produce inconsistent responses, hallucinations,
or inefficient code [HTQ+23, LAB+24, MEM+24, KWB+25]. A typical observation is
that LLMs can generate good solutions with far fewer trials than classical optimization
methods, but do not reach the same final performance.

CAAFE (Context-Aware Automated Feature Engineering) [HMH23] presents an LLM-
based approach to automated data preparation that includes data context awareness.
The system takes a dataset accompanied by a natural language problem specification
by a user as input. It then iteratively generates a data preparation pipeline along with
corresponding code, applies it to the data and trains a model, then re-generates data
preparation code based on the model’s performance results, and continues repeating the
process.

6.2 Combined Methodologies

Combining multiple optimization methods is a convenient way to take advantage of
their complementarity in order to enhance results. It is also possible to break down the
optimization process and select a method most appropriate for each part.

Saga [SKB23] is a data preparation framework that builds data pipelines in two phases.
It starts by finding the most promising pipelines using an evolutionary algorithm, which
optimizes pipelines by adding or removing data transformations from them, reordering
them, or mixing parts of two pipelines. The data transformations in this step are all
configured with default hyperparameters. In the second phase, transformation hyperpa-
rameters are tuned using successive halving with Hyperband [JT16, LJD+18]. Finally,
the system ranks the pipelines and returns the top-k ones. Saga is designed to support
parallelization. It also optionally includes user input in the form of custom constraints
or data transformations.

AutoML systems also present a variety of combinations of optimization algorithms.
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Auto-PyTorch enhances its Bayesian optimization approach with multi-fidelity opti-
mization [FSK07, KFB+17, FKH18] to strategically allocate its evaluation budget, and
with meta-learning in order to warm-start the Bayesian optimizer.

Similarly, Auto-sklearn, based on Bayesian optimization, uses meta-learning to initial-
ize its Bayesian optimizer in order to start evaluations from quality points, and employs
successive halving for better budget allocation.

Two members of the TPOT family extend the base approach with different additions:
Layered-TPOT [GVO17] introduces a hierarchical search method that creates a layered
structure to reduce the number of evaluations by favoring promising pipelines. TPOT-
SH [PNJK19] uses successive halving to balance its budget, allocating less time to weak
pipelines, and more to promising ones.

DeepLine constructs machine learning pipelines using reinforcement learning, aug-
mented by meta-learning to guide actions, and hierarchical action filtering to structure
and prune the search space, leading to faster convergence.

These combined approaches demonstrate the benefits of using complementary optimiza-
tion techniques to enhance or overcome certain shortcomings of the base optimization
algorithm. The most frequent choices are the use of meta-learning to warm-start the
search process, thus speeding it up and increasing the likelihood of a quality solution; hi-
erarchical methods to structure the search process, making it more efficient; multi-fidelity
optimization and in particular successive halving, to improve search budget allocation
based on the pertinence of the explored solution. Naturally, the addition of these tech-
niques also comes with a cost, however, it is worth considering whether the extra cost is
offset by their contributions.

6.3 Comparative Overview

Table 3 presents a comparative overview of pipeline optimization methods for auto-
mated data preparation. It summarizes their main advantages and limitations, and
rates them according to relevant criteria when selecting an approach: effectiveness in
terms of final solution quality; efficiency, both sampling and computational; having low
pre-requirements such as additional resources and overhead; context-awareness; time,
resource, or evaluation budget control ; and explainability. It also categorizes the indi-
vidual approaches discussed in the subsections above based on the broader optimization
methodology they belong to. AutoML solutions (that also optimize the model, as op-
posed to just the data pipeline) are marked with an asterisk (*). Solutions that combine
multiple optimization methods are marked with (+). It is worth noting that the men-
tioned advantages and limitations are of a rather general nature, and that individual
approaches may implement additional techniques to overcome certain shortcomings.

Despite the lesser prominence of data preparation in AutoML when compared to mod-
eling, the contributions reviewed in this section nonetheless show significant progress in
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automating data pipeline optimization. They offer a varied selection of approaches de-
pending on needs and available resources, as can be seen through comparison along some
meaningful criteria in Table 3. These approaches propose different compromises in terms
of efficiency, pre-requirements, as well budget or explainability concerns. The context-
aware nature of certain methods is of particular interest, since it adds a new dimension
to the automated process by providing a degree of domain expertise. Usually reserved to
humans, this aspect represents one of the main challenges in effectively automating data
preparation, next to achieving an efficient pipeline optimization process.

7 Conclusions and Outlook

Summary and Discussion. Data preparation is essential to making raw data usable and
effective for machine learning tasks. Our structured overview of data transformations
according to their purposes, functions, and category types illustrates the plethora of
possible configurations in data pipeline optimization. In practice, selecting transforma-
tions, ordering them, and optimizing their hyperparameters is a time- and labor-intensive
procedure. Handling it with automation allows to streamline the decision process, and
substantially alleviates the required effort.

Examining data preparation in existing AutoML solutions has shown that they typically
rely on their input data being ML-ready beforehand. We found that those systems,
relatively light on data treatment, are primarily focused on basic usability and feature
engineering, overlooking other important aspects such as data quality. Furthermore, only
a few AutoML solutions include a pipeline optimization architecture that could support
the complete data preparation process. Even so, none of them fully implement such a
workflow.

Among semi-automated approaches, the human-guided-automation and automation-
assisted-human method alternatives for pipeline construction highlight the persistent
value of human analytics and domain expertise. The different roles of human and au-
tomation in these approaches allow for a view into the difficulties of automating certain
data preparation elements, notably those that require domain knowledge, such as parsing
and content alignment. At the same time, they present an opening to further automate
the process.

In a review of fully automated data preparation approaches and their varied underlying
optimization methods, we comparatively assessed their advantages and limitations. They
namely consist in tradeoffs between effective, efficient optimization and resource require-
ments, in addition to considerations of budget restrictions and explainability. Moreover,
the inclusion of natural language techniques to provide context-awareness to certain data
pipeline optimization methods has shown promise in terms of replicating the benefits of
domain expertise in an automated fashion.

Future Directions. Traditionally, performance optimization efforts in machine learning,
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as well as AutoML, have been concentrated on the modeling aspect of the workflow. The
recent rise of the field of data-centric AI has raised awareness about the merits of optimiz-
ing data, in order to improve not only model loss, but also quality in terms of faithfully
representing real-world phenomena. This entails a growing interest in optimizing data
preparation ahead of, or in combination with, model optimization.

Though select areas of data treatment have successfully been automated by the database
or machine learning communities, mainly in the areas of data organization and quality for
the former, and model performance optimization for the latter, a separation between the
two is quite evident. Beyond the search for novel techniques, connecting the contributions
of both communities in a single pipeline architecture would allow to bridge that gap and
implement a more holistic process that is automated end-to-end, ranging from raw data
to ML model predictions.

The main challenge in automating data preparation for ML has consistently been the de-
sign of an optimization algorithm for the vast search space of data pipeline configurations
that is both efficient and effective. A variety of optimization methods have been pro-
posed to approach this problem, with some also offering perks such as context-awareness,
budget control, or explainability. However, despite their merits, each of these approaches
has certain shortcomings, leaving room for further refinement.

The emerging data-centricity paradigm in ML has brought to light the unrealized po-
tential in optimizing data to expand the limits of machine learning processes. There
has been significant progress in automating data preparation pipelines to date, yet sub-
stantial challenges still remain. Continued research in these directions, and the eventual
complete automation of the ML workflow from raw data to inference, would constitute a
profound advancement towards automating data science in an increasingly data-driven
world.
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A ML Terminology

Machine learning Machine learning (ML) is a subfield of artificial intelligence and of
data science, focused on developing methods that can learn patterns
from data in order to make predictions.

(Learning) Algorithm A learning algorithm is the underlying procedure or method used
to learn from data. Some common types of learning algorithms are
neural networks, random forest, and k-nearest neighbors. In some
papers, it is also called inducer.

Hyperparameter A hyperparameter is an algorithm configuration variable that con-
trols one of several aspects of the learning process (e.g., the learning
rate—the magnitude of learning steps, which controls how fast new
information overrides old information).

(ML) Model A machine learning model is a system trained using a learning al-
gorithm. It retains learned patterns and can use them to make
predictions.

Inference Inference is the process through which a trained model makes pre-
dictions on new data.

Task A machine learning task is a specific problem to be solved by an ML
model. Tasks can belong to different learning paradigms: super-
vised learning, where the model’s training is guided by some known
outcomes (e.g., regression—predicting values, or classification—
affecting input data to known categories); unsupervised learning,
where the model identifies patterns without external guidance (e.g.,
clustering—identifying groups of similar elements within the data);
and others.

Dataset A dataset is a structured collection of data, typically organized (for
tabular data) into rows and columns.

Data point A data point is a single observation, or instance of information.
Data points usually correspond to the rows of a tabular dataset.

Feature A feature is a property or variable describing data points. Features
usually correspond to the columns of a tabular dataset. Features
can belong to one of several types, such as numeric (e.g., age) or
categorical (e.g., gender).

Target variable / label A target variable, or label, is the outcome variable that a machine
learning model is trained to predict.

Training set A training dataset is a subset of data used to train a machine learn-
ing model. It is the dataset that the model learns on.

Test set A test dataset is a subset of data used to evaluate the performance
of a trained model after training is complete. It is kept separate
from the training dataset, and is not used for learning.
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Validation set A validation dataset is an optional subset of data that can be used
to evaluate the performance of a model during training, in order to
adjust hyperparameters. It is kept separate from the training and
test datasets, and is not used for learning.

Loss A loss function is a mathematical function, or metric, that quanti-
fies the performance of an ML model by measuring the difference
between predicted values and labels representing known (real) val-
ues. A frequently used loss function for regression is mean squared
error; cross-entropy is a common one for classification.

Data preparation Data preparation is the process of making raw data suitable and op-
timized for machine learning through the application of data trans-
formation operations.

Pipeline A pipeline is a sequence of steps applied within the machine learning
workflow, which can include elements of data preparation, modeling,
and evaluation.

Table 4: Definitions of fundamental ML concepts relevant to data preparation
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